

## Effectiveness of adding a WASH component on the ambulatory treatment of Severe Acute Malnutrition

ACF research update from DRC, Pakistan and Chad (2012-2017)

### **3 ACF studies**

- Study 1: Household Water Treatment in DRC
- Study 2: Household Water Treatment in Pakistan
- Study 3: WASH kit in Chad

# What is ambulatory treatment of Severe Acute Malnutrition?



# What is ambulatory treatment of Severe Acute Malnutrition?



#### Context WASH'NUT

#### Knowledge gap

- Diarrhea
- Stunting
- Wasting?
- African context?

#### "WASH in NUT" strategy

## Study 1

# Effectiveness of adding PUR® on the ambulatory treatment of Severe Acute Malnutrition

Research from DRC (2012-2013)





## Study 1 : DRC

<u>Study location</u>: Popokabaka, Bandundu Province, DRC

Quasi-experimental panel design:

Comparative study with 2 arms (total 207 children):

- control group:

ambulatory treatment of SAM without complication

- intervention group: same + PUR

#### $\rightarrow$ Main results:

Groups not similar at baseline

The average treatment time decreased by 4 days (30.4 to 26.4 days, 13%)

Results not statistically significant



# Study 2: Pakistan

Effectiveness of adding a Household Water Treatment component on the ambulatory treatment of Severe Acute Malnutrition

Research from Pakistan (2016-2017)



## **Study location**

Dadu district, Sindh, Pakistan

#### Sindh Province:

- ✓ U5 mortality: 104/1000
- ✓ 48% of U5 stunted
- ✓ 15.4% wasted
- ✓ 3.6% severely wasted

ACF activities

✓ CMAM



## Methodology

- Cluster Randomized Control Trial at health centers => 4 study arms:
  - 1. SAM treatment + jerry can (control)
  - 2. SAM treatment + jerry can + Aquatab Chlorine tablets 67mg (20L), 7/week
  - 3. SAM treatment + jerry can + **P&G Purifier of Water** (P&G PoW)
    - Flocculent + chlorine disinfectant sachets (10L), 14/week
  - 4. SAM treatment + jerry can + Ceramic candle water filter > Micro-filtration, 1 time distribution









#### **Results – Baseline Characteristics**

- > No major differences between the groups
- Poor latrine coverage (30-42%)
- No issue with water access
- Almost no water treatment in any group (boiling <3%)</p>
- > Around 900 children included (225 per group)

## **Results - Water quality**

- Water quality measured at one unannounced household visit (approx. 4-6 weeks into the treatment)
- Better water quality in PUR and Aquatab groups
- Adherence to treatment insufficient: 34-37% still contaminated in these groups
- <50% showing residual chlorine
- Control and Ceramic filters similar (50-55% contaminated)
- Tests did not count contamination levels (presence/absence tests), and were done only one time per household.

#### **Results - Diarrhea**

- Diarrhea prevalence recorded at each weekly visit
- No significant reduction of diarrhea except for Aquatabs

#### **Results - Recovery**

- **Significant increase of recovery rates** in all water treatment arms (+17-22 percentage points)
- Best results for Aquatab group, but no significant difference between intervention arms.
- Diarrhea prevalence reduces OR within 120 days by 60%

## Length of Stay and Weight Gain

- Initial hypothesis: decrease of diarrhea leading to reduction of Length of Stay and to increase in Weight Gain
- No effect detected by the study
- Longitudinal prevalence of diarrhea was found to increase length of stay by 11.1 days per prevalent week

## Limitations

- Length of Stay higher than initially considered
- Pakistan National Protocol exit criteria: MUAC>11.5cm for transfer to Supplementary Feeding Program, but no SFP so MUAC>12.5cm without time limit. Decision of research team to limit at 120 days and >12.5cm
- Possible seasonable bias with more Aquatab & P&G PoW enrolled in February-March, and more Control & Ceramic still in treatment during the lean & rainy season (July-October).
- Limited water quality testing in frequency and quantitative.

## Discussion

- Increased nutritional recovery
- All types of water treatment found with significant higher recovery rates
- No decrease in diarrhea (only 2-6% lower in treatment groups), although diarrhea prevalence increased Length of Stay in care and reduced odds of recovery.
- New hypotheses:
  - Other pathways need to be addressed (hands, food...)
  - Better adherence by promotion at each visit

# Study 3

### Effectiveness of adding a Household WASH package on the ambulatory treatment of Severe Acute Malnutrition

#### Research from Chad (2015-2016)







## WASH Kit

#### Content

safe drinking water storage container

Soap 750g x 3 months

Aquatabs / 3 months

A plastic Cup

Instructions leaflet



## Study setting

#### Area of intervention

- ✓ Mao and Mondo health districts, Chad
- ✓ GAM = 15,4%
- ✓ SAM = 2,5%
- ✓ Diarrhea = 32%

#### ACF nutritional activities

 Among other activities, ACF supports health centers for outpatient therapeutic program (OTP) on SAM



## Objectives of the study

To assess the effect of the household WASH kit on:

1 – WASH Kit adherence, tested through observational HH study (2 visits 4 weeks – 8 weeks)

2 - Morbidity outcomes (diarrhea, vomiting, cough, fever) following recall of the mother at each weekly health center visit

- 3 Nutritional outcomes:
  - ✓ Weight-gain and time-to-recovery
  - Proportion of cured children
  - Proportion of relapses 2 and 6 months after recovery

## Methods



## **Results - Admission**

- **1603** children included to the study:
  - Control group: 758 children in in 10 health center
  - Intervention group: 845 children in 10 health center

### **Admission characteristics**



#### Results – WASH kit adherence



Note: Residual chlorine tested 0.2 – 1 mg/l (WHO)

| Outcomes                | Intervention | Control | p-value |
|-------------------------|--------------|---------|---------|
| Time-to-recovery (days) | 51.7         | 56.1    | 0.038   |

| Outcomes                | Intervention | Control | p-value |
|-------------------------|--------------|---------|---------|
| Time-to-recovery (days) | 51.7         | 56.1    | 0.038   |

| Outcomes                | Intervention | Control | p-value |
|-------------------------|--------------|---------|---------|
| Time-to-recovery (days) | 51.7         | 56.1    | 0.038   |
| Weight gain (g/kg/day)  | 4.2          | 3.8     | 0.086   |

| Outcomes                      | Intervention | Control | p-value |
|-------------------------------|--------------|---------|---------|
| Time-to-recovery (days)       | 51.7         | 56.1    | 0.038   |
| <b>Weight gain</b> (g/kg/day) | 4.2          | 3.8     | 0.086   |
| Discharge type (%)            |              |         |         |
| Recovered                     | 93.1         | 82.9    | 0.036   |

| Outcomes                      | Intervention | Control | p-value |
|-------------------------------|--------------|---------|---------|
| Time-to-recovery (days)       | 51.7         | 56.1    | 0.038   |
| <b>Weight gain</b> (g/kg/day) | 4.2          | 3.8     | 0.086   |
| Discharge type (%)            |              |         |         |
| Recovered                     | 93.1         | 82.9    | 0.036   |
| Defaulters                    | 3.9          | 4.8     | 0.308   |
| Internal transfers            | 0.8          | 0.8     | 0.934   |
| Died                          | 0.5          | 0.7     | 0.629   |
| Non-responders                | 1.7          | 10.9    | 0.001   |

| Outcomes                      | Intervention | Control | p-value |
|-------------------------------|--------------|---------|---------|
| Time-to-recovery (days)       | 51.7         | 56.1    | 0.038   |
| <b>Weight gain</b> (g/kg/day) | 4.2          | 3.8     | 0.086   |
| Discharge type (%)            |              |         |         |
| Recovered                     | 93.1         | 82.9    | 0.036   |
| Defaulters                    | 3.9          | 4.8     | 0.308   |
| Internal transfers            | 0.8          | 0.8     | 0.934   |
| Died                          | 0.5          | 0.7     | 0.629   |
| Non-responders                | 1.7          | 10.9    | 0.001   |
| Relapse proportion (%)        |              |         |         |
| Follow up 2 months            | 13.1         | 15.2    | 0.778   |
| Follow up 6 months            | 0.3          | 2.8     | 0.071   |

## **Research operational challenges**

Human resources

**Shortage in RUTF** 

**Nutritional protocol adherence** 

#### Conclusions

• Improving Kit use: still a challenge

#### Nutrition outcome:

- Increasing proportion of recovery (curation rates) among non responders
- Pathways? => Microbiological stool analyses required
- Ensuring sustainability:
  - No effect on relapse
  - Other interventions (Wata kit, solar...) at community level?
- Operational recommendation:
  - Areas with high level of non-responders/low recovery rate

## Other & Further research...

- DDMAS Chad
- TISA Sénégal
- Engaging with new partners...

Thank You...