Water source options – a comparison = most preferable = preferable = least preferable | | Water source | Capital cost | Running cost | Yield | Bacteriological water quality | Situation in which technology is most applicable | |----------|--|--|---|--|---|--| | | Spring | Low or medium if | Low | High | Good if spring | Reliable spring flow required | | | protection | piped to community | | | catchment is adequately protected | throughout the year | | | Sand dams | Low – local labour
and materials used | Low | Medium/High — depending on method used to abstract water. Water can be abstracted from the sand and gravel upstream of the sand dam via a well or tubewell | Good if area upstream of dam is protected | Can be constructed across
seasonal river beds on
impermeable bedrock | | | Sub surface
dams | Low – local labour
and materials used | Low | Medium/High — depending on method used to abstract water. Water can be abstracted from the sand, gravel or soil upstream of the sub-surface dam via a well or tubewell | Good if area upstream of dam is protected | Can be constructed in sediments across seasonal river beds on impermeable bedrock | | | Infiltration
galleries | Low – a basic infiltration gallery can be constructed using local labour and materials | Low | Medium/High –
depending on method
used to abstract water | Good if filtration
medium is well
maintained | Should be constructed next to lake or river | | | Rainwater
harvesting | Low – low cost
materials can
be used to build
storage tanks and
catchment surfaces | Low | Medium – dependent on
size of collection surface
and frequency of rainfall | Good if collection
surfaces are kept
clean and storage
containers are well
maintained | In areas where there are one or
two wet seasons per year | | | Hand-dug well
capped with a
rope pump | Low | Medium – spare parts
required for pump | Medium | Good if rope and pump mechanisms are sealed and protected from dust. Area around well must be protected | Where the water table is
not lower than six metres –
although certain rope pumps
can lift water from depths of up
to 40 metres | | 1 | Hand-dug well
capped with a
hand pump | Medium | Medium – spare parts
required for pump | Medium | Good if area around well is protected | Where the water table is not lower than six metres | | 4 | Tube well or borehole capped with a hand pump | Medium – well
drilling equipment
needed. Borehole
must be lined | Medium – hand pumps
need spare parts | Medium | Good if area around borehole/tubewell is protected | Where a deep aquifer must be accessed | | 1 | Gravity supply | High – pipelines and
storage/flow balance
tanks required | Low | High | Good if protected spring used as source | Stream or spring at higher elevation – communities served via tap stands close to the home | | | Borehole
capped with
electrical/
diesel/solar
pump | High – pump and storage expensive | High – fuel or power required to run pump. Fragile solar cells need to be replaced if damaged | High | Good if source is protected | In a small town with a large enough population to pay for running costs | | E | Direct
river/lake
abstraction
with treatment | High – intake must
be designed and
constructed | High – treatment and pumping often required. Power required for operation | High | Good following treatment | Where large urban population must be served | | | Reverse
osmosis | High – sophisticated plant and membranes required | High – power required for operation. Replacement membranes required | High | Good | Where large urban population must be served | | | Household
filters | High – certain filters
can be expensive to
purchase/produce | Filters can be fragile. Replacement filters can be expensive or difficult to source | Low | Good as long as regular maintainance is assured | In situations where inorganic contaminants are present in groundwater sources or protected sources are not available | | | SODIS (solar disinfection) | Low – although clear bottles can be difficult to source in remote areas. | Low | Low | Good | In areas where there is adequate sunlight – water needs to be filtered to remove particulate matter that may harbour pathogens before SODIS can be carried out effectively. SODIS is not appropriate for use with turbid water |